Extensions of the Maximum Principle: Exponential Preservation by the Heat Equation
نویسنده
چکیده
منابع مشابه
Maximum Principle and Convergence of Fundamental Solutions for the Ricci Flow
In this paper we will prove a maximum principle for the solutions of linear parabolic equation on complete non-compact manifolds with a time varying metric. We will prove the convergence of the Neumann Green function of the conjugate heat equation for the Ricci flow in Bk × (0, T ) to the minimal fundamental solution of the conjugate heat equation as k → ∞. We will prove the uniqueness of the f...
متن کاملOperational Approach and Solutions of Hyperbolic Heat Conduction Equations
We studied physical problems related to heat transport and the corresponding differential equations, which describe a wider range of physical processes. The operational method was employed to construct particular solutions for them. Inverse differential operators and operational exponent as well as operational definitions and operational rules for generalized orthogonal polynomials were used to...
متن کاملFluid-Structure Interaction of Vibrating Composite Piezoelectric Plates Using Exponential Shear Deformation Theory
In this article fluid-structure interaction of vibrating composite piezoelectric plates is investigated. Since the plate is assumed to be moderately thick, rotary inertia effects and transverse shear deformation effects are deliberated by applying exponential shear deformation theory. Fluid velocity potential is acquired using the Laplace equation, and fluid boundary conditions and wet dynamic ...
متن کاملMultiple vacation policy for MX/Hk/1 queue with un-reliable server
This paper studies the operating characteristics of an MX/Hk/1 queueing system under multiple vacation policy. It is assumed that the server goes for vacation as soon as the system becomes empty. When he returns from a vacation and there is one or more customers waiting in the queue, he serves these customers until the system becomes empty again, otherwise goes for another vacation. The brea...
متن کاملGeneralized Hermite Polynomials and the Heat Equation for Dunkl Operators
Based on the theory of Dunkl operators, this paper presents a general concept of multivariable Hermite polynomials and Hermite functions which are associated with finite reflection groups on R . The definition and properties of these generalized Hermite systems extend naturally those of their classical counterparts; partial derivatives and the usual exponential kernel are here replaced by Dunkl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003